

Tetrahedron Letters 42 (2001) 9265-9267

TETRAHEDRON LETTERS

Enantioselective synthesis of β , β -dialkyl α -hydroxy γ -butyrolactones

Sunil V. Pansare* and Annyt Bhattacharyya

Division of Organic Chemistry (Synthesis), National Chemical Laboratory, Pune 411 008, India Received 11 September 2001; revised 12 October 2001; accepted 19 October 2001

Abstract—An ephedrine-derived morpholine dione is employed in the synthesis of chiral alkylidene morpholinones that are efficiently converted to β -substituted α , γ -dihydroxy butyramides, precursors of the corresponding butyrolactones. Enantioselective synthesis of a spiro analog of pantolactone as well as a naturally occurring pantolactone homolog is achieved with this protocol. © 2001 Elsevier Science Ltd. All rights reserved.

The enantioselective synthesis of α -hydroxy γbutyrolactones¹ has been the subject of several recent investigations. A number of these lactones are natural products and this has spurred interest in their total synthesis.² β , β -Dialkyl α -hydroxy γ -butyrolactones have recently been employed as components of interleukin inhibitors.³ This particular class of butyrolactones and the parent hydroxy acids are also of interest due to their structural similarity to pantolactone⁴ and the potential for application as pantothenic acid analogs in biologically relevant molecules.⁵ Herein, we describe the application of an ephedrine-derived morpholine-dione in a general, stereoselective synthesis of β , β -disubstituted α -hydroxy butyramides and the corresponding butyrolactones.

The reaction of ephedrine and oxalyl chloride at ambient temperature generates the morpholine-dione 1 in 63% yield. Dione 1 reacts readily with a variety of Grignard and organolithium reagents⁶ at the lactone carbonyl to generate the corresponding hemiacetals 2 (Scheme 1). Thus, treatment of 1 with cyclohexyl magnesium bromide generates 2a (80%, ds=2.5/1) and reaction with sec-butyl magnesium chloride gives a mixture of diastereomers **2b–e** (84%, dr = 3/3/1/1). The stereochemistry at the hemiacetal carbon and the secbutyl carbon for **2b**-e has not been established. Dehydration of the hemiacetals is best achieved by treatment with BF₃ etherate at ambient temperature and the cyclohexylidene morpholinone 3a is obtained in 82% from 2a. Dehydration of the 2b-e mixture gives 3b/3c (90%, 1/1 mixture of E/Z isomers, Scheme 1). The stereochemistry of **3b** and **3c** is based on the downfield shift of the methylene hydrogens in **3b** (δ 2.6–2.8) as compared to **3c** (δ 2.2–2.4).⁷ Olefins **3b** and **3c** are separable by chromatography and further reactions were conducted on isomerically homogeneous material.

We next investigated the synthesis of a spiro analog of pantolactone. The Prins reaction⁸ ((CH₂O)_n, acetic acid, cat. H₂SO₄, 85°C) of the cyclohexylidene morpholinone **3a** efficiently generates the spiro bis-acetal **4a** (90%, Scheme 2) as a single diastereomer. This remarkably rapid reaction is complete within 2 min. Prolonged heating results in decomposition of **4a**. The alkylidene morpholinones **3b** and **3c** are converted to the spiro bis-acetals **4b** and **4c** in an analogous manner. The stereochemistry at the spiro acetal stereocenter in **4a**–c

Scheme 1.

^{*} Corresponding author.

is assigned by analogy to other reactions of the oxocarbenium ion intermediate in the ephedrine-derived template.⁹ At this stage, the stereochemistry at the quaternary carbon (bearing the methyl and ethyl groups) in **4b** and **4c** was tentatively assigned as shown (Scheme 2). The assignment was later confirmed by synthesis of the derived lactones and by correlation.

Morpholinones 4 incorporate all the required carbons for the target α -hydroxy butyrates and possess a spiro acetal stereocenter that is subject to stereoselective reduction with silanes. Accordingly, treatment of 4a-c with excess TiCl₄/triethylsilane efficiently generates the morpholinones 5a-c as single diastereomers resulting from axial reduction of the intermediate oxocarbenium ion under stereoelectronic control (Scheme 3). Morpholinones 5a-c are protected versions of the requisite α,γ -dihydroxy butyric acid precursors of the target lactones. Dissolving metal reduction of 5a-c generates the α -hydroxy γ -methoxy butyramides **6a**-c (50-52%). Conversion of 6 to the lactones 7 was readily achieved by a one-pot reaction sequence. Liberation of the primary hydroxyl group in 6 by demethylation (BBr₃) and subsequent acid catalyzed lactonization (H_2SO_4/H_2O_1) -15° C to rt) generates the lactones 7a-c in good yield $(70-86\%, \text{ Scheme } 3).^{10}$

This constitutes the first asymmetric synthesis of the spiro lactone (S)-7a (98% e.e. by chiral GC analysis).¹¹ One of the pantolactone homologs 7 is a natural product isolated from *Marshallia tenuifolia*,¹² the abso-

Scheme 2.

lute configuration of which has been unambiguously established as 3S,4S by synthesis from D-glucose.¹³ A synthesis from (S)-malic acid has also been reported recently.¹⁴ The specific rotation and spectroscopic data of **7b** (97% e.e.) obtained from our study are in agreement with those of the natural product¹⁵ and **7b** therefore has the 3S,4S configuration. Since the stereochemistry of the α -hydroxy bearing carbon has been established as 'S' in the present as well as other related systems,^{4b} and **7b** and **7c** are diastereomers, it follows that **7c** (97% e.e.) has the 3S,4R configuration. The Prins reaction of the alkylidene morpholinones **3** is therefore stereospecific and proceeds with retention of the olefin geometry. Thus, the *E*-isomer **3b** generates **4b** whereas the *Z*-isomer **3c** generates **4c**.

In conclusion, the ephedrine derived morpholine dione 1 is a convenient precursor for chiral alkylidene morpholinones that are key substrates in a highly stereose-lective Prins reaction/acetal reduction protocol. A general, enantioselective route to β , β -disubstituted α -hydroxy butyrolactones has been established. Current efforts focus on other applications of the dione 1 in the enantioselective synthesis of α -hydroxy acids and derivatives.

Acknowledgements

Financial assistance (in part) from the Department of Science and Technology (Grant SP/S1/G-11/96) is gratefully acknowledged. We thank Mr. D. Mandal for assistance in determining the enantiomeric excess of the lactones.

References

- (a) Peterson, M.; Kalbermatten, G. PCT Int. Appl. WO 2001018231 A2, 2001; (b) Nakano, T.; Oh-Hashi, N.; Ino, Y.; Nagai, Y. *Main Group Met. Chem.* 2000, 23, 259; (c) Eliel, E. L.; Bai, X.; Ohwa, M. J. Chin. Chem. Soc. 2000, 47, 63; (d) Blandin, V.; Carpentier, J.-F.; Mortreaux, A. *Eur. J. Org. Chem.* 1999, 1787.
- (a) Sefkow, M. J. Org. Chem. 2001, 66, 2343; (b) Ueki, T.; Ichinari, D.; Yoshihara, K.; Morimoto, Y.; Kinoshita, T. Tetrahedron Lett. 1998, 39, 667; (c) Ichinari, D.; Ueki, T.; Yoshihara, K.; Kinoshita, T. Chem. Commun. 1997, 1743.
- Lacrampe, J. F.; Armand, F.; Eddy, E. J.; Deroose, D. F.; Fortin, J. M. C.; Coesemans, E. PCT Int. Appl. WO 0,110,866 A1 20010215, 2001.
- For studies on the resolution and enantioselective synthesis of pantolactone, see: (a) Kesseler, M.; Hauer, B.; Friedrich, T.; Mattes, R. PCT Int. Appl. WO 2001032890 A1, 2001; (b) Pansare, S. V.; Jain, R. P. Org. Lett. 2000, 2, 175; (c) Haughton, L.; Williams, J. M.; Zimmerman, J. A. Tetrahedron: Asymmetry 2000, 11, 1697; (d) Paetow, M.; Ahrens, D.; Hoppe, D. Tetrahedron Lett. 1992, 33, 5323 and references cited therein.
- (a) Fissekis, J. D.; Skinner, C. G.; Shive, W. J. Am. Chem. Soc. 1960, 82, 1654; (b) Klar, U.; Schwede, W.; Skuballa, W.; Buchmann, B.; Schriner, M. Ger. Offen. DE 19735574 A1 19990211, 1999 (CAN 130: 168162).

- Imada, Y.; Mitsue, Y.; Ike, K.; Washizuka, K.-I.; Murahashi, S.-I. Bull. Chem. Soc. Jpn. 1996, 69, 2079.
- The stereochemical assignment is based on the reported trend in chemical shifts for the olefinic methine protons in *E*- and *Z*-benzylidene camphor derivatives. See: Kossanyi, J.; Furth, B.; Morizur, J. P. *Tetrahedron* 1970, 26, 395.
- For reviews on the Prins reaction, see: (a) Adams, D. R.; Bhatnagar, S. P. Synthesis 1977, 661; (b) Snider, B. B. Compr. Org. Synth. 1991, 2, 527.
- Pansare, S. V.; Ravi, R. G.; Jain, R. P. J. Org. Chem. 1998, 63, 4120.
- All new compounds were characterized by ¹H and ¹³C NMR, IR and elemental analysis/HRMS. Data for 4S-4-hydroxy-2-oxa-spiro[4,5]decan-3-one (7a): mp 92–93°C;
 ¹H NMR (200 MHz, CDCl₃): δ 4.38 (d, 1H, J=9.3, OCH₂), 4.12 (bs, 1H, CHOH), 3.91 (dd, 1H, J=9.3, 1.4, OCH₂), 3.46 (bs, 1H, OH), 1.84–1.1 (m, 10H, cyclohexyl); ¹³C NMR (50 MHz, CDCl₃): δ 178 (C=O), 75.7 (CHOH), 73.7 (OCH₂), 44.1 (C_{quat}), 33.7 (CH₂), 25.8

(CH₂), 25.3 (CH₂), 22.9 (CH₂), 21.8 (CH₂); IR (CHCl₃): 3425, 2931, 2857, 1779, 1455, 1166, 1144, 1009, 1005 cm⁻¹; HRMS calcd for C₉H₁₄O₃: 170.0943, found: 170.0942; $[\alpha]_D^{25} = +13.9$ (*c* 0.55, CHCl₃).

- The enantiomeric excess of the lactones was determined by GC analysis with a HP Chiral (20% permethylated β-cyclodextrin) column (30 m×0.320 mm×0.25 µm).
- 12. Herz, W.; Bruno, M. Phytochemistry 1987, 26, 1175.
- Tadano, K.; Kanazawa, S.; Ogawa, S. J. Org. Chem. 1988, 53, 3868.
- Ueki, T.; Ichinari, D.; Yoshibara, K.; Morimoto, Y.; Kinoshita, T. *Tetrahedron Lett.* 1998, 39, 667.
- 15. ¹H NMR (200 MHz, CDCl₃): δ 4.2 (d, 1H, J=9.3, CH_2O), 4.16 (s, 1H, CHOH), 3.87 (d, 1H, J=9.3, CH_2O), 3.0 (br, 1H, OH), 1.61–1.39 (m, 2H, CH_2CH_3), 1.19 (s, 3H, CH_3), 0.92 (t, 3H, J=7.3, CH_2CH_3); ¹³C NMR (50 MHz, CDCl₃): δ 177.6 (C=O), 76.0 (CHOH), 73.7 (CH₂O), 43.6 (C_{quat}), 24.2 (CH₂CH₃), 21.0 (CH₃), 8.2 (CH₂CH₃); $[\alpha]_{D}^{25} = +4.5$ (c 0.25, CHCl₃) for **7b** and $[\alpha]_{D}^{2D} = +4.7$ (c 0.26, CHCl₃) for the natural product.